Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Data ; 8(1): 136, 2021 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-34021166

RESUMO

Earthworms are an important soil taxon as ecosystem engineers, providing a variety of crucial ecosystem functions and services. Little is known about their diversity and distribution at large spatial scales, despite the availability of considerable amounts of local-scale data. Earthworm diversity data, obtained from the primary literature or provided directly by authors, were collated with information on site locations, including coordinates, habitat cover, and soil properties. Datasets were required, at a minimum, to include abundance or biomass of earthworms at a site. Where possible, site-level species lists were included, as well as the abundance and biomass of individual species and ecological groups. This global dataset contains 10,840 sites, with 184 species, from 60 countries and all continents except Antarctica. The data were obtained from 182 published articles, published between 1973 and 2017, and 17 unpublished datasets. Amalgamating data into a single global database will assist researchers in investigating and answering a wide variety of pressing questions, for example, jointly assessing aboveground and belowground biodiversity distributions and drivers of biodiversity change.


Assuntos
Biodiversidade , Oligoquetos/classificação , Animais , Biomassa
2.
Ecol Evol ; 10(14): 7602-7615, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32760551

RESUMO

Native grasslands are one of the most endangered ecosystems in North America. In this study, we examined the ecological and evolutionary roles of endangered and threatened (e/t) grasses by establishing robust evolutionary relationships with other nonthreatened native and introduced grass species of the community. We hypothesized that the phylogenomic distribution of e/t species of grasses in Illinois would be phylogenetically clustered because closely related species would be vulnerable to the same threats and have similar requirements for survival. This study presents the first time a phylogeny based on complete plastome DNA of Poaceae was analyzed by phylogenetic diversity analysis. To avoid the disturbance of e/t populations, DNA was extracted from herbarium specimens. Next-generation sequencing (NGS) techniques were used to sequence DNA of plastid genomes (plastomes). The resulting phylogenomic tree was analyzed by phylogenetic diversity metrics. The extracted DNA successfully produced complete plastomes demonstrating that herbarium material is a practical source of DNA for genomic studies. The phylogenomic tree was strongly supported and defined Dichanthelium as a separate clade from Panicum. The phylogenetic metrics revealed phylogenetic clustering of e/t species, confirming our hypothesis.

3.
Biol Rev Camb Philos Soc ; 95(2): 350-364, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31729831

RESUMO

Soil is one of the most biodiverse terrestrial habitats. Yet, we lack an integrative conceptual framework for understanding the patterns and mechanisms driving soil biodiversity. One of the underlying reasons for our poor understanding of soil biodiversity patterns relates to whether key biodiversity theories (historically developed for aboveground and aquatic organisms) are applicable to patterns of soil biodiversity. Here, we present a systematic literature review to investigate whether and how key biodiversity theories (species-energy relationship, theory of island biogeography, metacommunity theory, niche theory and neutral theory) can explain observed patterns of soil biodiversity. We then discuss two spatial compartments nested within soil at which biodiversity theories can be applied to acknowledge the scale-dependent nature of soil biodiversity.


Assuntos
Biodiversidade , Solo , Animais , Microbiologia do Solo
4.
Science ; 366(6464): 480-485, 2019 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-31649197

RESUMO

Soil organisms, including earthworms, are a key component of terrestrial ecosystems. However, little is known about their diversity, their distribution, and the threats affecting them. We compiled a global dataset of sampled earthworm communities from 6928 sites in 57 countries as a basis for predicting patterns in earthworm diversity, abundance, and biomass. We found that local species richness and abundance typically peaked at higher latitudes, displaying patterns opposite to those observed in aboveground organisms. However, high species dissimilarity across tropical locations may cause diversity across the entirety of the tropics to be higher than elsewhere. Climate variables were found to be more important in shaping earthworm communities than soil properties or habitat cover. These findings suggest that climate change may have serious implications for earthworm communities and for the functions they provide.


Assuntos
Biodiversidade , Oligoquetos , Distribuição Animal , Animais , Biomassa , Clima , Planeta Terra , Ecossistema , Modelos Lineares , Modelos Biológicos , Solo
5.
Proc Natl Acad Sci U S A ; 116(26): 12883-12888, 2019 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-31186355

RESUMO

Precipitation changes among years and locations along gradients of mean annual precipitation (MAP). The way those changes interact and affect populations of soil organisms from arid to moist environments remains unknown. Temporal and spatial changes in precipitation could lead to shifts in functional composition of soil communities that are involved in key aspects of ecosystem functioning such as ecosystem primary production and carbon cycling. We experimentally reduced and increased growing-season precipitation for 2 y in field plots at arid, semiarid, and mesic grasslands to investigate temporal and spatial precipitation controls on the abundance and community functional composition of soil nematodes, a hyper-abundant and functionally diverse metazoan in terrestrial ecosystems. We found that total nematode abundance decreased with greater growing-season precipitation following increases in the abundance of predaceous nematodes that consumed and limited the abundance of nematodes lower in the trophic structure, including root feeders. The magnitude of these nematode responses to temporal changes in precipitation increased along the spatial gradient of long-term MAP, and significant effects only occurred at the mesic site. Contrary to the temporal pattern, nematode abundance increased with greater long-term MAP along the spatial gradient from arid to mesic grasslands. The projected increase in the frequency of extreme dry years in mesic grasslands will therefore weaken predation pressure belowground and increase populations of root-feeding nematodes, potentially leading to higher levels of plant infestation and plant damage that would exacerbate the negative effect of drought on ecosystem primary production and C cycling.


Assuntos
Secas , Pradaria , Herbivoria , Nematoides/fisiologia , Comportamento Predatório , Solo/parasitologia , Animais , Inundações
6.
J Great Lakes Res ; 44(2): 263-270, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29736110

RESUMO

Fungi are phylogenetically diverse organisms found in nearly every environment as key contributors to the processes of nutrient cycling and decomposition. To date, most fungal diversity has been documented from terrestrial habitats leaving aquatic habitats underexplored. In particular, comparatively little is known about fungi inhabiting freshwater lakes, particularly the benthic zone, which may serve as an untapped resource for fungal biodiversity. Advances in technology allowing for direct sequencing of DNA from environmental samples provide a new opportunity to investigate freshwater benthic fungi. In this study, we employed both culture-dependent and culture-independent methods to evaluate the diversity of fungi in one of the largest freshwater systems on Earth, the North American Laurentian Great Lakes. This study presents the first comprehensive survey of fungi from sediment from Lake Michigan and Lake Superior, resulting in 465 fungal taxa with only 7% of sequence overlap between these two methods. Additionally, culture-independent analyses of the ITS1 and ITS2 regions revealed 49% and 72%, respectively, of the OTUs did not match a described fungal taxonomic group below kingdom Fungi. The low level of sequence overlap between methods and high percentage of fungal taxa that can only be classified at the kingdom level suggests an immense amount of fungal diversity remains to be studied in these aquatic fungal communities.

8.
Ecol Appl ; 27(2): 355-362, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28097736

RESUMO

The positive relationship between plant diversity and ecosystem functioning has been criticized for its applicability at large scales and in less controlled environments that are relevant to land management. To inform this gap between ecological theory and application, we compared recovery rates of belowground properties using two chronosequences consisting of continuously cultivated and independently restored fields with contrasting diversity management strategies: grasslands restored with high plant richness and managed for diversity with frequent burning (n = 20) and grasslands restored with fewer species that were infrequently burned (n = 15). Restoration and management for plant diversity resulted in 250% higher plant richness. Greater recovery of roots and more predictable recovery of the active microbial biomass across the high diversity management strategy chronosequence corresponded with faster recovery of soil structure. The high diversity grasslands also had greater nutrient conservation indicated by lower available inorganic nitrogen. Thus, mesic grasslands restored with more species and managed for high plant diversity with frequent burning enhances the rate of belowground ecosystem recovery from long-term disturbance at a scale relevant to conservation practices on the landscape.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais , Raízes de Plantas/fisiologia , Plantas , Microbiologia do Solo , Solo/química , Pradaria , Illinois , Nitrogênio/metabolismo
9.
Parasit Vectors ; 9: 18, 2016 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-26762514

RESUMO

BACKGROUND: Mosquitoes host diverse microbial communities that influence many aspects of their biology including reproduction, digestion, and ability to transmit pathogens. Unraveling the composition, structure, and function of these microbiota can provide new opportunities for exploiting microbial function for mosquito-borne disease control. METHODS: MiSeq® sequencing of 16S rRNA gene amplicons was used to characterize the microbiota of adult females of Culex pipiens L. and Cx. restuans Theobald collected from nine study sites in central Illinois. RESULTS: Out of 195 bacterial OTUs that were identified, 86 were shared between the two mosquito species while 16 and 93 OTUs were unique to Cx. pipiens and Cx. restuans, respectively. The composition and structure of microbial communities differed significantly between the two mosquito species with Cx. restuans hosting a more diverse bacterial community compared to Cx. pipiens. Wolbachia (OTU836919) was the dominant bacterial species in Cx. pipiens accounting for 91% of total microbiota while Sphingomonas (OTU817982) was the dominant bacterial species in Cx. restuans accounting for 31% of total microbiota. Only 3 and 6 OTUs occurred in over 60% of individuals in Cx. pipiens and Cx. restuans, respectively. There was little effect of study site on bacterial community structure of either mosquito species. CONCLUSION: These results suggest that the two mosquito species support distinct microbial communities that are sparsely distributed between individuals. These findings will allow investigations of the role of identified microbiota on the spatial and temporal heterogeneity in WNV transmission and their potential application in disease control.


Assuntos
Culex/microbiologia , Insetos Vetores/microbiologia , Microbiota/genética , Animais , Sequência de Bases , Culex/classificação , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Feminino , Humanos , Illinois , Dados de Sequência Molecular , Controle de Mosquitos , Análise de Sequência de DNA
10.
Glob Chang Biol ; 20(4): 1339-50, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24395533

RESUMO

Global maize production alters an enormous soil organic C (SOC) stock, ultimately affecting greenhouse gas concentrations and the capacity of agroecosystems to buffer climate variability. Inorganic N fertilizer is perhaps the most important factor affecting SOC within maize-based systems due to its effects on crop residue production and SOC mineralization. Using a continuous maize cropping system with a 13 year N fertilizer gradient (0-269 kg N ha(-1) yr(-1)) that created a large range in crop residue inputs (3.60-9.94 Mg dry matter ha(-1) yr(-1)), we provide the first agronomic assessment of long-term N fertilizer effects on SOC with direct reference to N rates that are empirically determined to be insufficient, optimum, and excessive. Across the N fertilizer gradient, SOC in physico-chemically protected pools was not affected by N fertilizer rate or residue inputs. However, unprotected particulate organic matter (POM) fractions increased with residue inputs. Although N fertilizer was negatively linearly correlated with POM C/N ratios, the slope of this relationship decreased from the least decomposed POM pools (coarse POM) to the most decomposed POM pools (fine intra-aggregate POM). Moreover, C/N ratios of protected pools did not vary across N rates, suggesting little effect of N fertilizer on soil organic matter (SOM) after decomposition of POM. Comparing a N rate within 4% of agronomic optimum (208 kg N ha(-1) yr(-1)) and an excessive N rate (269 kg N ha(-1) yr(-1)), there were no differences between SOC amount, SOM C/N ratios, or microbial biomass and composition. These data suggest that excessive N fertilizer had little effect on SOM and they complement agronomic assessments of environmental N losses, that demonstrate N2 O and NO3 emissions exponentially increase when agronomic optimum N is surpassed.


Assuntos
Agricultura/métodos , Fertilizantes , Nitrogênio , Solo/química , Zea mays , Biomassa , Carbono/análise , Produtos Agrícolas , Iowa , Nitrogênio/análise , Microbiologia do Solo
11.
Environ Manage ; 49(2): 412-24, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22105609

RESUMO

The USDA's Conservation Reserve Program (CRP) has predominantly used only a few species of dominant prairie grasses (CP2 practice) to reduce soil erosion, but recently has offered a higher diversity planting practice (CP25) to increase grassland habitat quality. We quantified plant community composition in CP25 and CP2 plantings restored for 4 or 8 years and compared belowground properties and processes among restorations and continuously cultivated soils in southeastern Nebraska, USA. Relative to cultivated soils, restoration increased soil microbial biomass (P = 0.033), specifically fungi (P < 0.001), and restored soils exhibited higher rates of carbon (C) mineralization (P = 0.010). High and low diversity plantings had equally diverse plant communities; however, CP25 plantings had greater frequency of cool-season (C(3)) grasses (P = 0.007). Older (8 year) high diversity restorations contained lower microbial biomass (P = 0.026), arbuscular mycorrhizal fungi (AMF) biomass (P = 0.003), and C mineralization rates (P = 0.028) relative to 8 year low diversity restorations; older plantings had greater root biomass than 4 year plantings in all restorations (P = 0.001). Low diversity 8 year plantings contained wider root C:N ratios, and higher soil microbial biomass, microbial community richness, AMF biomass, and C mineralization rate relative to 4 year restorations (P < 0.050). Net N mineralization and nitrification rates were lower in 8 year than 4 year high diversity plantings (P = 0.005). We attributed changes in soil C and N pools and fluxes to increased AMF associated with C(4) grasses in low diversity plantings. Thus, reduced recovery of AMF in high diversity plantings restricted restoration of belowground microbial diversity and microbially-mediated soil processes over time.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais , Poaceae/classificação , Microbiologia do Solo , Bactérias/metabolismo , Carbono/análise , Carbono/metabolismo , Ecossistema , Ácidos Graxos/metabolismo , Micorrizas/metabolismo , Nitrogênio/análise , Nitrogênio/metabolismo , Raízes de Plantas/química , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/microbiologia , Poaceae/crescimento & desenvolvimento , Solo/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...